Double mode model of size-dependent chaotic vibrations of nanoplates based on the nonlocal elasticity theory
نویسندگان
چکیده
Abstract In this paper vibrations of the isotropic micro/nanoplates subjected to transverse and in-plane excitation are investigated. The governing equations problem based on von Kármán plate theory Kirchhoff–Love hypothesis. small-size effect is taken into account due nonlocal elasticity theory. formulation mixed employs Airy stress function. two-mode approximation deflection application Bubnov–Galerkin method reduces system ordinary differential equations. Varying load parameters parameter, bifurcation analysis performed. bifurcations diagrams, maximum Lyapunov exponents, phase portraits as well Poincare maps constructed numerical simulations. It shown that for some conditions chaotic motion may occur in system. Also, small-scale effects character vibrating regimes illustrated discussed.
منابع مشابه
free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory
in this article, an analytical solution is developed to study the free vibration analysis offunctionally graded rectangular nanoplates. the governing equations of motion are derived basedon second order shear deformation theory using nonlocal elasticity theory. it is assumed that thematerial properties of nanoplate vary through the thickness according to the power lawdistribution. our numerical...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Buckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملBuckling analysis of graphene nanosheets based on nonlocal elasticity theory
This paper proposed analytical solutions for the buckling analysis of rectangular single-layered graphene sheets under in-plane loading on all edges simply is supported. The characteristic equations of the graphene sheets are derived and the analysis formula is based on the nonlocal Mindlin plate. This theory is considering both the small length scale effects and transverse shear deformation ef...
متن کاملForced vibration of piezoelectric nanowires based on nonlocal elasticity theory
In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2021
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-021-06224-6